引用:
概述
HTML5中的Canvas并没有直接提供绘制椭圆的方法,下面是对几种绘制方法的总结。各种方法各有优缺,视情况选用。各方法的参数相同:
- context为Canvas的2D绘图环境对象,
- x为椭圆中心横坐标,
- y为椭圆中心纵坐标,
- a为椭圆哼半轴长,
- b为椭圆纵半轴长。
参数方程法
该方法利用椭圆的参数方程来绘制椭圆
//-----------用参数方程绘制椭圆---------------------
//函数的参数x,y为椭圆中心;a,b分别为椭圆横半轴、//纵半轴长度,不可同时为0//该方法的缺点是,当linWidth较宽,椭圆较扁时//椭圆内部长轴端较为尖锐,不平滑,效率较低function ParamEllipse(context, x, y, a, b){ //max是等于1除以长轴值a和b中的较大者//i每次循环增加1/max,表示度数的增加//这样可以使得每次循环所绘制的路径(弧线)接近1像素var step = (a > b) ? 1 / a : 1 / b;context.beginPath();context.moveTo(x + a, y); //从椭圆的左端点开始绘制for (var i = 0; i < 2 * Math.PI; i += step){ //参数方程为x = a * cos(i), y = b * sin(i),//参数为i,表示度数(弧度)context.lineTo(x + a * Math.cos(i), y + b * Math.sin(i));}context.closePath();context.stroke();};均匀压缩法
这种方法利用了数学中的均匀压缩原理将圆进行均匀压缩为椭圆,理论上为能够得到标准的椭圆.
//------------均匀压缩法绘制椭圆--------------------
//其方法是用arc方法绘制圆,结合scale进行横轴或纵轴方向缩放(均匀压缩)//这种方法绘制的椭圆的边离长轴端越近越粗,长轴端点的线宽是正常值//边离短轴越近、椭圆越扁越细,甚至产生间断,这是scale导致的结果//这种缺点某些时候是优点,比如在表现环的立体效果(行星光环)时//对于参数a或b为0的情况,这种方法不适用function EvenCompEllipse(context, x, y, a, b){ context.save();//选择a、b中的较大者作为arc方法的半径参数var r = (a > b) ? a : b; var ratioX = a / r; //横轴缩放比率var ratioY = b / r; //纵轴缩放比率context.scale(ratioX, ratioY); //进行缩放(均匀压缩)context.beginPath();//从椭圆的左端点开始逆时针绘制context.moveTo((x + a) / ratioX, y / ratioY);context.arc(x / ratioX, y / ratioY, r, 0, 2 * Math.PI);context.closePath();context.stroke();context.restore();};三次贝塞尔曲线法一
三次贝塞尔曲线绘制椭圆在实际绘制时是一种近似,在理论上也是一种近似。 但因为其效率较高,在计算机矢量图形学中,常用于绘制椭圆,但是具体的理论我不是很清楚。 近似程度在于两个控制点位置的选取。这种方法的控制点位置是我自己试验得出,精度还可以.
//---------使用三次贝塞尔曲线模拟椭圆1-----------------
//此方法也会产生当lineWidth较宽,椭圆较扁时,//长轴端较尖锐,不平滑的现象function BezierEllipse1(context, x, y, a, b){ //关键是bezierCurveTo中两个控制点的设置//0.5和0.6是两个关键系数(在本函数中为试验而得)var ox = 0.5 * a,oy = 0.6 * b;context.save();
context.translate(x, y);context.beginPath();//从椭圆纵轴下端开始逆时针方向绘制context.moveTo(0, b); context.bezierCurveTo(ox, b, a, oy, a, 0);context.bezierCurveTo(a, -oy, ox, -b, 0, -b);context.bezierCurveTo(-ox, -b, -a, -oy, -a, 0);context.bezierCurveTo(-a, oy, -ox, b, 0, b);context.closePath();context.stroke();context.restore();};
三次贝塞尔曲线法二
这种方法是从StackOverFlow中一个帖子的回复中改变而来,精度较高,也是通常用来绘制椭圆的方法.
//---------使用三次贝塞尔曲线模拟椭圆2---------------------
//此方法也会产生当lineWidth较宽,椭圆较扁时//,长轴端较尖锐,不平滑的现象//这种方法比前一个贝塞尔方法精确度高,但效率稍差function BezierEllipse2(ctx, x, y, a, b){ var k = .5522848,ox = a * k, // 水平控制点偏移量oy = b * k; // 垂直控制点偏移量ctx.beginPath();<br/>
//从椭圆的左端点开始顺时针绘制四条三次贝塞尔曲线ctx.moveTo(x - a, y);ctx.bezierCurveTo(x - a, y - oy, x - ox, y - b, x, y - b);ctx.bezierCurveTo(x + ox, y - b, x + a, y - oy, x + a, y);ctx.bezierCurveTo(x + a, y + oy, x + ox, y + b, x, y + b);ctx.bezierCurveTo(x - ox, y + b, x - a, y + oy, x - a, y);ctx.closePath();ctx.stroke();};光栅法
这种方法可以根据Canvas能够操作像素的特点,利用图形学中的基本算法来绘制椭圆。 例如中点画椭圆算法等。
其中一个例子是园友“豆豆狗”的一篇博文“”。这种方法由于比较“原始”,灵活性大,效率高,精度高,但要想实现一个有使用价值的绘制椭圆的函数,比较复杂。比如,要当线宽改变时,算法就复杂一些。